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In [i, 2], a viscoplastic soil model was proposed. Below, on the basis of this model, 
the problem of the interaction of a plane one-dimensional wave and a fixed or displaceable 
barrier is solved using a computer and the method of characteristics. In [2, 3] the wave- 
propagation problem was solved on the basis of the same model. The results of blast-wave- 
parameter measurements, indicating that the viscous and plastic properties of soils have an 
important effect on the wave-propagation characteristics, were presented in [2, 4-6]. 

In accordance with the model proposed in [i], in dense media two limiting nonlinear vol- 
ume compression dSagrams, ~D(e) and aS(e), should be taken into account. These correspond to 
dynamic loading (g § ~) and to the equilibrium state of the medium (s + 0) (static loading) ~ 
Unloading is not governed by the same equations as loading, which leads to the formation of 
residual strains. The total strain of an element is ~ = sl + s2, where e~ is associated with 
the instantaneous compression and s2 with the compression developing over a finite time. 

At small loads the limit relations are assumed to be linear and the behavior of the medi- 
um [i, 2] is determined by the following sequence of equations: 

for impact loading (at the discontinuity), 

for a continuous increase of stress (stress loading), 

+ ~ = ~IED + ~/Es; (2) 
for decreasing stress but increasing e2 (stress unloading), 

-6 ~s = ~/ER + ~o(l /Es - -  I /E  D + I/ER) + ~am(t/E D - -  I/E~); (3) 

for decreasing stress and e2 = const (e2 assumed irreversible), 

~=ER~, (4) 

where V = EDEs/(E D -- ES) n (viscosity parameter); E D is the dynamic and E S the static compres- 

sive modulus; E R is the unloading modulus; n is the coefficient of viscosity; and o m is the 
maximum particle stress. 

The wave in the medium is created by the load in the initial cross section r = 0, which 
varies according to the law 

= ~ ( 1  - -  t/O), 0 ~ t ~ O; ~ = O, t . ~  O. ( 5 )  

At a distance r* there is a barrier of incompressible material of mass m per unit area bound- 
ed by two parallel planes. The medium beyond the barrier is the same as that in front of it. 
It is proposed to determine the parameters of the incident, reflected, and transmitted waves, 
the load on the barrier, and the motion of the barrier. 

For a particle in the state defined by (3), in the presence of the secondary increase 
in stress caused by the arrival of the reflected wave, the equation remains valid until ~m 
is reached (maximum stress in incident wave), after which Eq. (2) is satisfied. For a parti- 
cle in the state defined by (4), the equation remains valid up to the value of ~ correspond- 
ing to the beginning of unloading with respect to e2, after which Eq. (3) is satisfied and, 
beyond Om, Eq. (2). 

We will use the Lagrangian variables h = mass and t = time. The solution reduces to the 
integration of the system of basic equations of motion 

Ou Oa ~ 0 ,  Ou i 0~ = 0 ,  h = p o  r, 
Ot Oh Oh Po Ot 
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which is closed successively by the equations (1)-(4); Po is the initial density of the medi- 
um. 

The boundary conditions are as follows: In the initial section Eq. (5) is given; at the 
incident and transmitted wave fronts 

= - - A u ,  h = A t ,  A = VEDp0 = C0Po, 

Co i s  t h e  s p e e d  o f  s o u n d  d e t e r m i n e d  f rom t h e  d y n a m i c  d i a g r a m ;  a t  t h e  b a r r i e r  

m d u / d t  = ~ i - - ~ ,  h = h *  = p0 r*, 

w h e r e  ~ :  i s  t h e  b a r r i e r  l o a d  a s s o c i a t e d  w i t h  t h e  i n c i d e n t  wave and  o2 i s  t h a t  a s s o c i a t e d  w i t h  
t h e  t r a n s m i t t e d  wave (when m = ~ we o b t a i n  u = 0 ) ;  a t  t h e  r e f l e c t e d  wave f r o n t  

- -  ~ = A ( u ~  - -  u l ) ,  h = - - A t  ~ 2h*, 

w h e r e  ~ ,  u~ ,  and  o3 ,  us  a r e  t h e  s t r e s s e s  a nd  p a r t i c l e  v e l o c i t i e s  i n  t h e  i n c i d e n t  and  r e f l e c -  
t ed  w a v e s ,  r e s p e c t i v e l y .  

We now go o v e r  t o  d i m e n s i o n l e s s  L a g r a n g i a n  v a r i a b l e s  a nd  d i m e n s i o n l e s s  s t r e s s e s ,  s t r a i n s ,  
p a r t i c l e  v e l o c i t y ,  and  b a r r i e r  m a s s ;  

x = ~ r &  o = ~ h / A ,  T = ~t, o ~ = a/Omax, 

u ~ = --Au/omax, 8 ~ ~ E D 8/~max, m ~ ~ p m / A .  

We d e n o t e  ED/E S = y ,  ED/ERo = B, and  x* = ~h* / A  = ~ r * / c o .  I n  t h e  new v a r i a b l e s  t h e  p r o b l e m  
p a r a m e t e r s  a r e  T,  $,  ~0 ,  m , a n d  x* .  

The s o l u t i o n  was o b t a i n e d  on a BESM-6 c o m p u t e r  f o r  t h e  n i n e  v a r i a n t s  o f  T a b l e  1 ,  u s i n g  
t h e  m e t h o d  o f  c h a r a c t e r i s t i c s  w i t h  x* = 6 .  

I n  a l l  c a s e s ,  a p a r t  f rom v a r i a n t  9,  t h e  l o a d  i n  t h e  i n i t i a l  s e c t i o n  c o r r e s p o n d e d  t o  Eq. 
(5)  and  $ = 0 . 5 ;  f o r  v a r i a n t  9 we t o o k  ~ = Z m a x ( 1 - -  t / e )  s ,  a nd  B = 0 . 4 .  

Experimental values of the characteristics of certain soils [2], required for the trans- 
ition to dimensional quantities, are presented in Table 2, where w is the moisture content 
of the soil. 

We will examine the general laws of wave--barrier interaction with reference to the ex- 
ample of variant 6. In Fig. la-c we have plotted the a~ c~ and u~ curves in vari- 
ous cross sections of the medium for passage of the incident, reflected, and transmitted 
waves. Without loss of generality, it may be assumed that the barrier is infinitely thin but 
has finite mass m ~ The appearance of the wave beyond the barrier corresponds to the moment 
of arrival of the precursor of the incident wave. Curves 0-3 relate to the distances x* = 
0, 1.5, 3, and 4.5 (in front of the barrier), curves 4 and 5 to the distance x* = 6 (at the 
barrier, front and rear), and curves 6-9 to the distance x* = 7.5, 9, i0,5, and 15 (beyond 
the barrier). 

The incident wave is led by a precursor with a discontinuity of all the parameters at 
the front (discontinuities are denoted by circles). Beyond the discontinuity the parameters 
increase and decrease continuously. With increase in the distance from the initial cross 
section the wave gradually broadens, the discontinuity tends to zero, and the time taken by 
the parameters to reach the maximum increases. The development of the strain and particle 
velocity lags behind the stress. 

As the discontinuity approaches the barrier, the stress doubles, as in a linear-elastic 
medium, since at the discontinuity the viscous properties are suppressed. The reflected wave 
travels from the barrier to the initial section; at the same time, the load on the barrier 
increases, and the barrier is set in motion, which creates a continuous transmitted compres- 
sion wave beyond the barrier. The broadening process is continued in the reflected wave, 
the discontinuity at the wave front being quickly "assimilated. In the particles there is a 
secondary increase in stress and strain, which then decrease again. As it approaches the in- 
itial section, the reflected wave is attenuated, and the secondary maxima decrease. 

In the initial section, on the arrival of the reflected wave, the wave-creating load 
still has a large value. The wave traveling from the barrier is reflected from this section, 
which gives rise to a third wave moving toward the barrier and producing a further increase 
in stress and strain. Interaction of the third wave and the barrier generates a fourth wave 
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traveling toward the initial section. The second maximum of the barrier load on the incident- 
wave side is lower than the first. The interaction of the third wave and the barrier leads 
to an increase in barrier velocity and to the appearance of a secondary compression wave be- 
yond the barrier, which causes a new increase in the parameters. The maximum values of o ~ 
E ~ and u ~ are higher in this wave than in the first -- in this way the progressive transfer 
of energy from the region in front of the barrier to the region beyond it is accomplished. 

At small ~e there is no secondary increase in barrier load and no secondary wave beyond 
the barrier, since the wave reflected from the barrier exhausts itself on the way to the in- 
itial section. 

Figure 2 shows the wave propagation at different values of the load and barrier parame- 
ters. Curve 0 corresponds to the incident and transmitted wave fronts, curves l~ ~ to the 
front of the wave reflected from the barrier, and curves 1"-6", 1-6, and 4**-6** to the stress 
maxima of the incident, reflected, and transmitted waves, respectively. The velocities of the 
incident- and transmitted-wave fronts do not depend on the load parameters and the barrier 
mass, but only on the properties of the medium. The velocity of the incident-wave maximum 
decreases with increase in ~6 but increases with distance from the initial section. On the 
first-loading intervals the velocity of the reflected-wave front is equal to the incident 
wave velocity, but on the stress-unloading intervals it has a greater value determined by the 
unloading modulus. The barrier load reaches a maximum at the moment of arrival of the inci- 
dent-wave maximum. The velocity of the reflected-wave maximum increases with distance from 
the barrier. It is substantially greater than the velocity of the incident-wave maximum. As 
~8 increases, so does the time required to reach the maximum of the load on the front of the 
barrier. The maximum of ~e wave reflected from a fixed barrier moves faster than that of 
the wave reflected from a displaceable barrier. 

Figure 2 also shows the variation of the load o~ in the initial section at the three 
values ~e = 5, i0, and 50, corresponding to cases i and 4, 2, and 5, and 3 and 6. 

In Fig. 3, we have plotted the barrier load for viscoplastic, elastic, and plastic mod- 
els. Curves 1-6 give the load on the front and curves 4o-6 ~ the load on the rear face of a 
barrier in a viscoplastic medium. As before, the numbering of the curves corresponds to the 
order of the variants. Curves 1"-3" relate to the load on a fixed barrier calculated in ac- 
cordance with the model of a linear-elastic medium for ~e = 5, I0, and 50, respectively. The 
modulus of elasticity was taken equal to the dynamic compression modulus for the viscous medi- 
um. Curves 2** and 3** give the fixed-barrier load calculated on the basis of the model of 
a plastic medium with compressive modulus equal to the dynamic modulus of the viscous medium 
and with unloading at constant strain (~e = i0 and 50, respectively). In accordance with [7], 
as far as the sudden drop the barrier load is determined by the following equations: 
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in a plastic medium, 

pO = 21t  -t- t /FO - -  3 t*/2FO + t *  ] n  (2 - -  T/~*)/I~O];  

in a linear-elastic medium, 

pO = 2 [t  + ( t*  - -  t)l,~O ]. 

In a plastic medium the load falls to a value corresponding to the initial section. 

From a comparison of curves 1-3 and 4-6 it follows that displaceability of the barrier 
leads to a decrease in the load on the front face. 

In the case of variant 7, in the wave approaching the barrier the maximum stress is 
reached abruptly at the front (the wave is not smeared out); consequently, the load on the 
leading face has a maximum at the moment of arrival of the front. From a comparison of 
curves 7 and 4 it follows that a decrease in y, equivalent to convergence of the static and 
dynamic compression diagrams, leads to an increase in the maximum value of the load, changes 
its character (to impact), but reduces its duration. As y -> i, the viscous medium goes over 
into an elastic Hookean medium. At y =i.i, the wave still decays appreciably on the way 
to the barrier, but, as in the case of a Hookean medium, there is no longer any broadening. 
The value y = 1.0-1.5 relates to rocks. In soils y has greater values, in the range 2-4.5 
[2]. 
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An increase in pe (e increases while ~ remains constant) leads to an increase in the 
maximum value of the load and to an increase in its duration of action. 

The dynamic compression diagram of the plastic medium is assumed to be linear; therefore, 
the wave does not broaden but remains an impact wave. In this case the load on the barrier 
increases abruptly. 

The dimensionless acceleration of the barrier 

= _ 

where o o x and o~ are the loads on the front and rear faces, respectively. 

In the elastic and plastic media considered the maximum of o~ is reached as the impact- 
wave front approaches the barrier. Its value does not depend on the barrier mass. At this 

O point of time, oF = 0 for all values of m ~ In the course of time ox decreases, while o~ in- 
creases to a maximum and then likewise decreases. Hence, it follows that the acceleration 
has a maximum at the approach of the wave front. For m ~ = i0 and ~e = 50, in accordance 
with curves 3* and 2* in Fig. 3, the maximum accelerations are 0.2 and 0.188 in the elastic 
and plastic media, respectively. 

In the medium with viscosity at y = 2 and 4, the wave approaching the barrier also has 
a discontinuity at the wave front, but this is followed by a further increase in stress. The 
load on the front face increases for some time. At the same time, the load on the rear face 
also increases. The barrier acceleration reaches a maximum at the maximum value of the dif- 

ference o~ -- o~- When m ~ = i0 and ~e = 50 (see curves 6 and 6 ~ in Fig. 3) the maximum accel- 
eration du~ = 0.105 occurs at T = ii.i. The barrier acceleration is less in the viscous 
medium than in the elastic and plastic media. 

Taking into account the second (dilatational) viscosity of the medium leads to broaden- 
ing of the incident, reflected, and transmitted waves, as well as to a broadening of the bar- 
rier load and a reduction in its maximum value and in the maximum acceleration. 

In Fig. 4 we have plotted the o~ ~ curves for the passage of the incident and reflec- 
ted waves through various cross sections and at the barrier; curves 1-3 relate to the viscous 
medium (variant 2) and to distances x* = 0.96, 1.92, and 6 (at the barrier), respectively; 
curves 1"-3" relate to the plastic medium and to the same distances. In both cases the bar- 
rier is fixed, ~e = i0. After the discontinuity at the precursor, with further continuous 
increase in stress the state of the viscous medium gradually moves away from the dynamic dia- 
gram toward the static diagram and crosses it into the region of higher strains. The arrival 
of the reflected wave causes a secondary increase in stress and strain. In the plastic medi- 
um the discontinuity is followed by unloading of the medium at constant strain and secondary 

513 



~ 0  

I~6 

�9 0,8 

0~4 

I",/- -/Drr, 
li -,,[ V...._4 

\ ! / /~ \  

> - ~ ~  

\ 

1 \ \ 

~ i ~ ' -  \ 4 1  .,. ' 

, 

6 10 4 14- 18 %- 

Fig. 3 

I~.2 I I I l 

" L 

~, ,41i : .//,,, ( 

0 0~,8 1,6 

Fig. 4 

/ 

E o 

2,4 

unloading along the unloading line. In Fig. A, lines E D and E S represent the dynamic and 

static compression diagrams for the viscous medium. 

From the results of the calculations it follows that in the case of wave-barrier interac- 
tion tensile stresses may develop (see Fig. la), with the result that the medium loses its 
continuity. However, the maximum barrier loads and the maximum barrier accelerations are 
reached before the tensile stresses develop. Calculations at T ~ 20 were made to illustrate 
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the change in the parameters when the soil withstands tensile stresses ~o = --0.2. Loss of 
continuity was not taken into account in formulating the problem. 

The solution obtained shows that the laws of wave--barrier interaction depend importantly 
on both the plastic and the viscous properties of the medium. Viscosity leads to broadening 
of the reflected and transmitted waves and the barrier load and modifies their profile, at 
the same time reducing the maxima of the barrier load and acceleration. 
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STRESSES IN THE ZONE OF THE WETTING LINE AND THE DYNAMIC 

RESISTANCE OF THE MENISCUS 

B. V. Zheleznyi and A. G. Nikiforov UDC 532.68 

INTRODUCTION 

The use of the usual "condition of adhesion" of a liquid to a solid surface in the analy- 
sis of the flow in the zone of the line of solid/liquid/gas three-phase contact (LTC) leads 
to a solution with mathematical singularities at the line of three-phase contact [i]. Remain- 
ing within the framework of the continuum mechanics of a liquid, these singularities can be 
eliminated either by renouncing the condition of adhesion for the zone of the line of three- 
phase contact or by assuming that the solid surface near the meniscus is covered with a poly- 
molecular (liquid) film, so that the line of three-phase contact, as such, is absent (there 
is no "wetting line," but only a finite extension of the transitional region between the men- 
iscus and a film of homogeneous thickness). In the latter case, the condition of adhesion 
can be used. 

The problem of the motion of the meniscus with the presence of a liquid film on the wall 
is formulated in [2, 3]. The difference between the "departing" and "arriving" menisci is 
connected with the fact that, in the first case, the mean thickness h, of the film (remaining 
on the wall) is determined by the velocity of the meniscus v, while, in the second case, the 
thickness h, of the film ahead of the meniscus can be given arbitrarily. In the case of the 
presence of an additional independent variable (h,), the case of an arriving meniscus is math- 
ematically more complicated. 

The principal practical problem, solvable for a departing meniscus, is to find the de- 
pendence h,(v), while, for an arriving meniscus, it is to find the effective hydrodynamic re- 
sistance. The first problem was solved in [2], taking account of the specific thermodynamic 
and rheological properties of "thin" films, while the second problem was solved in [3] for 
the case of rather "thick" films having the properties of a volumetric liquid. In the latter 
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